小特集

プログラミング The 心理学実験

PCを使う心理学実験が広く一般的になって、今はプログラミング環境に良い選択肢があり ます。最新の概要と特徴、デモやサンプルコード(http://odalab.org/pepe/)を通して、硬 派で楽しい心理学の一面をお届けします。(小田浩一)

Processing を用いた心理実験 プログラミング〈導入編〉

京都大学大学院人間・環境学研究科博士後期課程 津田裕之(っだ ひろゆき)

Profile — 津田裕之

京都大学工学部工業化学科卒業。日本学術振興会特別研究員(DC2)。専門は認知心理学(視覚記憶・空間認知)。

概要

本稿では Processing (プロセシ ング)の初歩的な紹介を行います。 Processing は Java をベースにし たプログラミング言語で,プログ ラミング初心者でも容易に習得可 能な言語として開発されました。 グラフィックや音を使ったプログラ ムが手軽に作成できます。Windows, Mac, Linux で実行可能であり, 無料で利用することができます。

なぜ Processing なのか

Processing はプログラミングに よるデザインやインタラクティブ アートを作成するためのツールと して開発がスタートしました。そ のため,動画像や音声の提示が短 いコードで実現できるよう作られ ています。また、プログラミング に馴染みのない美術系の学生でも 使いやすいように、文法は Java を簡略化した初心者にとってわか りやすいものとなっています。こ うした特徴は、心理実験を作成す るうえでもうってつけと言えま す。すなわち,動画像や音声の提 示が必要となることの多い心理実 験プログラミングを素早く手軽に 作成することができ、また学部生 が卒業研究のためにプログラミン グを学習する際などに比較的小さ

な学習コストで実験プログラムが 作成できると考えられます。

導入方法と基本操作

Processing は公式サイト http:// processing.org/からダウンロード できます。公式サイトの左側のメ ニューからダウンロードページへ 進んでください。最初に寄付を募 る画面が表示されますが、「No Donation | を選択してダウンロー ドページに進みましょう。 Windows と Linux については 32bit と 64bit の二つの選択肢が あるので, 自分のパソコンに合っ たほうをダウンロードしてくださ い。複数のバージョンがあります が,基本的に画面最上部に表示さ れている最新バージョンを選びま す。本稿では執筆時点での最新版 である 2.2.1 をもとに説明しま す。ZIPファイルを解凍したのち、 Windows の場合は Processing.exe を, Mac の場合は Processing.app をダブルクリックして Processing を起動します。

Processing の起動に成功すると 図1のようなウィンドウが表示 されます。これは Processing の プログラムを書くためのエディタ で,この画面でプログラムを書い て実行することができます。ウィ

ンドウ上部にはいくつかのボタン が並んでおり,それぞれプログラ ムの実行や停止,またファイルの 読み込みや保存に使用します。詳 しくは図1内の説明を見てくだ さい。白紙の領域は現在編集中の プログラムファイルの内容で,こ こにコードを書いていきます。ウ ィンドウ下部の黒い領域にはエラ ーメッセージなどが表示されま す。

図1 Processing のエディタ

簡単なプログラムの実行

それでは,簡単なプログラムを 使って Processing を実際に動か してみましょう。以下のコードを エディタに記述し,実行ボタンを 押してください。

Example 1

size(600, 400); line(0, 0, 600, 400); ellipse(300, 200, 100, 100);

図2 Example 1 の実行結果

図2のような結果が表示され たはずです。プログラムを終了す るには実行ウィンドウ(図形の描 画されたウィンドウ)を閉じるか, エディタのプログラム停止ボタン を押します。

このプログラムには三つの行が あり,それぞれが Processingの 持つ関数を記述したものです。 size 関数はプログラムの実行ウィ ンドウの大きさを指定する関数 で,line 関数と ellipse 関数はそ れぞれ線分や円を描くための関数 です。それぞれの関数の引数の意 味は以下のとおりです。

line(始点のX座標,始点のY座 標,終点のX座標,終点のY座標); ellipse(中心のX座標,中心のY座 標,円の横直径,円の縦直径);

座標は,ウィンドウの左上を原 点とする座標系で指定します。ウ ィンドウを開いて線分や円といっ た図形を描くというプログラム が,きわめて簡潔に記述できるこ とがわかると思います。

初期化関数とメインループ関数

Processing によるプログラミン グでは、初期化関数とメインルー プ関数という二つの関数をコード の中に含めてプログラミングする ことが通例です。初期化関数とは プログラムの実行時に最初に一度 だけ実行される関数のことで、関 数名は setup です。メインループ 関数はプログラムの実行中に繰り 返し実行され続ける関数で、関数 名は draw です。

実例を用いて説明しましょう。 先の Example 1 のプログラムを, setup 関数と draw 関数を用いて 書き直すと次のようになります。

Example 2

void setup(){
 size(600, 400);

}

void draw(){

line(0, 0, 600, 400); ellipse(300, 200, 100, 100);

}

実行するとExample 1と同様 の結果になることを確認してくだ さい。このコードは setup 関数と draw 関数のそれぞれの関数を定 義している形になっており,それ ぞれの関数の処理内容の部分に Example 1の内容が書かれていま す。size 関数など,最初に一度だ け実行されれば良い命令を setup 関数内に記述します。

さて,この例の場合,プログラ ムを setup 関数と draw 関数にわ ざわざ分けて書く意義がわかりに くいと思います。また,setup 関 数と draw 関数の挙動の違いも把 握しづらいと思います。では次の 例はどうでしょうか。

Example 3

void setup(){

size(600, 400); background(255); frameRate(10);
}

void draw(){

line(random(600), 0, random(600), 400);

}

はじめに setup 関数内で背景色 を白(255=輝度の最大値)に, フレームレート(draw 関数内の 処理が一秒間に繰り返される回 数)を 10Hz に指定しています。 draw 関数内には line 関数を記述 し,始点と終点の X 座標をラン ダムとした線分を引いています (random 関数の引数は戻り値の 最大値)。draw 関数内の処理は繰 り返し実行され続けるため,プロ グラムの実行中に線分が次々と描 き重ねられていきます。

もっと詳しく知るために

本稿では Processing のごく初 歩的な導入を行いました。ごく限 られた内容ではありますが言語の 雰囲気は感じ取ってもらえたので はないかと思います。筆者のサイ ト http://hiroyukitsuda.com にて より網羅的な解説や実際的な心理 実験プログラミングの方法につい て解説記事を用意しているので, 本稿を通して Processing プログ ラミングに興味を持たれた方はぜ ひそちらに目を通していただけれ ばと思います。